Overview of the Amargosa Desert Research Site (ADRS)

A Field Laboratory for the Study of Arid-Site Processes

Brian Andraski & David Stonestrom, Co-leaders ADRS

USGS-Nevada Water Science Center & National Research Program

U.S. Department of the Interior
U.S. Geological Survey
Arid sites often proposed for isolating Nation’s radioactive & other hazardous wastes

- Low precipitation, high ET, thick unsaturated zone
Arid sites often proposed for isolating Nation’s radioactive & other hazardous wastes
 • Low precipitation, high ET, thick unsaturated zone

Rapid population growth in the desert southwest is placing increased demands on ground-water resources

Modified from Stonestrom & Harrill (2007)
Arid sites often proposed for isolating Nation’s radioactive & other hazardous wastes
 - Low precipitation, high ET, thick unsaturated zone

Rapid population growth in the desert southwest is placing increased demands on ground-water resources

Dual needs ... waste management & resource protection ... require an understanding of both natural-hydrologic systems & contaminated systems
Natural waste-isolation features present a challenge when gathering data needed to support management decisions.
Natural waste-isolation features present a challenge when gathering data needed to support management decisions.

- **Precipitation** – annual average is low, but large temporal variability
 - Short-term field studies do not capture extreme variations

![Dry, dust-storm](image1.jpg)

![Heavy rain, standing water](image2.jpg)
Natural waste-isolation features present a challenge when gathering data needed to support management decisions:

- Precipitation – annual average is low, but large temporal variability
 - Short-term field studies do not capture extreme variations
- Thick unsaturated zone (100+ m) – highly variable; dry, rocky sediments
 - Complexities in characterization, instrumentation, & monitoring

So what’s the problem?

- UZB-3 borehole (115-m deep, 15-cm diam.) – ~2 km of cables & tubing ... “The White Mamba”
- Waste trench under construction – 18 m ... 1/6th of the way to the water table
Natural waste-isolation features present a challenge when gathering data needed to support management decisions:

- Precipitation – annual average is low, but large temporal variability
 - Short-term field studies do not capture extreme variations
- Thick unsaturated zone (100+ m) – highly variable; dry, rocky sediments
 - Complexities in characterization, instrumentation, & monitoring

Detailed data for arid sites are often lacking ...

- Limits ability to test assumptions about natural & contaminated systems
- Increases uncertainty in predictive models
AMARGOSA DESERT RESEARCH SITE (ADRS)

Field laboratory for sustained study of arid-site processes

- 1983 – USGS, BLM, State of Nevada
- Adjacent to Nation’s first commercial low-level radioactive waste (LLRW) facility – Beatty, Nevada

Overall objective

- Improve understanding of processes controlling unsaturated-zone transport of water & contaminants in arid environments
LLRW typically is “mixed waste”

- Contains both radioactive & hazardous components

- LLRW
 - “... waste not classified as high-level, spent-nuclear fuel, or mill tailings”
 (Regulated by USNRC, Agreement States; LLRW Policy Amendments Act; 10 CFR Part 61)
 - Commercial sources & forms
 - Hospitals, research, industry, nuclear-power plants, ...
 - Shoe covers & lab coats, tools, nuclear-power reactor filters & residues, ...
 - Hazard to public health
 - Up to 500 yr for high-concentration/long-lived radionuclides

- Hazardous components
 - May include radioactive organics & heavy metals
 (Regulated by USEPA; RCRA; 40 CFR Part 261)
 - Scintillation vials, cleaning solvents, mercury amalgam, ...
Amargosa Desert Research Site

- **Waste facility**
 - State owned; surrounded by BLM
 - LLRW, 1962-92
 - USNRC & State of NV regulation/oversight
 - Hazardous chemical, 1970-present
 - RCRA Subtitle C
 - USEPA & State of NV

- Precipitation (25-yr record)
 - 112 mm/yr average
 - min = 4, max = 225 mm/yr
- Creosote bush (*Larrea tridentata*)
- Alluvial/fluvial sediments
- Depth-to-water ~110 m
Shallow-land burial of LLRW

- Excavation, waste emplacement, backfill with stockpiled soil
- No liner required
 - Rely on natural- & disposal-site features to minimize water-waste contact
- Liquid waste solidified/dewatered prior to burial
 - "Early days" ... some liquids disposed directly into trenches

LLRW trench #22 – June 1988
Surfaces of completed trenches during operational period
 • Kept free of vegetation

Final cover over entire LLRW area (22 trenches)
 • Additional backfill to 2 m above land surface
Field-intensive research with multiple lines of data
 - Weather; ET; plants; microbiology;
 soil properties; soil water & gas monitoring;
 geology; geophysics; ground water

Natural & perturbed/contaminated conditions
 - Water & gas movement
 - Mixed-waste contaminants data
 - Tritium, carbon-14, VOCs, elemental mercury
 - Natural nitrate, perchlorate

Methods development

Field data integrated with modeling
 - Test & refine conceptual & numerical models

Multidisciplinary collaboration
 - USGS, University, Research Institute, National Lab, Other Agency
Instruments & monitoring within 400-m buffer zone*

* Distant/background study area located 3 km from waste facility
Cape Cod tracer-test array is impressive ...
but we’ve got the instrument shaft!

Cape Cod tracer-test array is impressive ...

15 m
Topical Outline for ADRS Session

- Oral
 - Overview
 - Water & gas flow
 - Tritium transport
 - VOC distribution & fluxes
 - Mercury transport
 - Tritium release by evapotranspiration
 - Wrap up ... Use of results

- Poster
 - Dispersion of contaminants by barometric pumping
 - Diurnal distillation for dewatering non-volatile point sources
 - Modeling water movement in desert soils
 - Natural perchlorate in precipitation, soils, & plants
 - Geologic framework
 - Geophysical mapping of hydrogeologic features