TRITIUM RELEASES TO THE ATMOSPHERE
ADJACENT TO AN ARID WASTE-DISPOSAL SITE

C. A. Garcia, B. J. Andraski, D. A. Stonestrom, C. A. Cooper, M. J. Johnson, R. L. Michel, S. W. Wheatcraft

(Garcia et al. 2009, in press, Vadose Zone Journal)
Desert Soil-Plant-Atmosphere Interactions

- Strongly influence subsurface water movement (liquid & vapor) (Gee et al. 1994; Andraski 1997)
- Little known about
 - Effect on release of water-borne contaminants to atmosphere
 - Remediation potential of native plants

Objective

- Estimate the magnitude and spatio-temporal variability of tritium transport from the shallow unsaturated zone to the atmosphere
EXPERIMENTAL APPROACH

Tritium flux to the atmosphere ...

Product of tritium concentrations and ET fluxes

- Tritium measured in
 - Soil – vapor extraction
 - Plants – toluene extraction

- ET partitioned into bare-soil E and plant T
EXPERIMENTAL APPROACH

- **Tritium Concentrations**
 - Sampled quarterly
 - August 2003–05
 - Spatially extrapolated
 - 0.76 km² study area
 - Base map May 2001 (Andraski et al. 2005)
 - Temporally interpolated
 - Converted to mass fraction (X)
Continuous ET partitioned: $ET = E + T$

- **ET**: measured eddy-covariance
- **$E = E_s \times \% soil \ cover$**
 - **E_s**: Chamber measurements
 - Priestley-Taylor model
- **T**: computed as $ET - E$

- % soil cover interpolated from quarterly plant-&-soil transect data
RESULTS – Tritium Concentrations

Spatial Distributions

- Measured Concentrations
 - Decrease from sub-root zone to canopy
 - Decrease with distance from facility
 - Background at >300 m

Air Std. (15% RH) off chart
Public: $4 	imes 10^7$ Bq/L
Occupational: $3 	imes 10^8$ Bq/L

(Garcia et al. 2009, in press)
RESULTS – Tritium Concentrations

Spatial Distributions

- Concentration Distributions
 - Reflect measurements
 - Pattern consistent for all quarters

(Garcia et al. 2009, in press)
RESULTS – Tritium Concentrations
Temporal Changes

- Sub-root-zone gravel
 - Long-term decrease near facility
 - Indicate plume movement with time

- Root-zone
 - Similar to sub-root zone
 - Short-term variations

- Plants
 - No long-term trends
 - Variation generally follows inverse of change in soil moisture

(Garcia et al. 2009, in press)
RESULTS – Partitioned Evapotranspiration

- **ET**
 - Similar to total precipitation
 - Lack of seasonality
 - Large increases with precipitation
 - Year 2 = twice year 1

- Average E:T = 70:30 %

- Proportion of T increased in year 2

(Garcia et al. 2009, in press)
RESULTS – Tritium Flux
Temporal Variability

- Magnitude of tritium flux affected by changes in
 - Soil & plant concentrations
 - Proportioning between soil E & plant T

- Tritium flux on average:
 - 85% attributed to E
 - 15% attributed to T

- Both short- & long-term variations
 - Annual tritium flux: Year-1 was 15% > Year-2

(Garcia et al. 2009, in press)
RESULTS – Tritium Flux
Spatial Variability – 2-Year Distribution

- Two “hotspots”
 - Represent 20% of study area
 - Contribute 90% of 2-year tritium flux

- Total mass of tritium released = 1.5 mg
 (8×10^{10} Bq; 2×10^{12} pCi)
 - 0.002% of the residual disposed tritium

(Garcia et al. 2009, in press)
IMPLICATIONS – Remediation

- 2-year flux (1.5 mg) ~ 0.002% of disposed tritium
 - Extrapolate into the future
 - 13 mg of tritium over 40 yrs (7×10^{11} Bq; 2×10^{13} pCi)
 - ~0.05% of remaining tritium
 - Total mass of tritium in atmospheric reservoir (Aug. 03 on)
 - Reaches a maximum of 5.6 mg in 2021 (3×10^{11} Bq; 8×10^{12} pCi)

- Plume movement
 - Concentrations nearest the source have reached peak values and are declining
 - Contaminant plumes advancing but decaying

(Garcia et al. 2009, in press)
IMPLICATIONS – Waste Disposal

- Devegetated soil covers
 - Enhanced accumulation of precipitation
 - Increases potential for downward tritium transport
 - Hinders upward vapor transport of contaminants
 - May play a role in unexplained long distance, lateral migration of contaminants (Andraski et al. 2005; Mayers et al. 2005)

- Arid site waste isolation – high ET / low precipitation
 - Diminished with
 - Precipitation and runoff into open trenches
 - Disposal of liquid contaminants in unlined trenches

(Garcia et al. 2009, in press)
CONCLUSIONS

- Complex soil-plant-atmosphere interactions control tritium release to the atmosphere

- Remediation through desert ET removed 1.5 mg (8×10^{10} Bq; 2×10^{12} pCi) of tritium from the 0.76 km² study area in 2 years

- Results improve understanding of near-surface processes controlling subsurface transport and release of contaminants to the atmosphere

(Garcia et al. 2009, in press)