Environmental Health - Toxic Substances Hydrology Program

Watershed Contamination from Metal and Uranium Mining

USGS scientists collecting soil samples at a mine
USGS scientists collecting soil samples inside the perimeter fence at the Canyon Mine, Arizona. The mine's headframe and mine workshop are visible in the background. Photo Credit: Kit MacDonald, U.S. Forest Service.

Watersheds affected by active and/or abandoned hard rock mining (HRM) often have hundreds of mining-related sites with little information on their relative significance as sources of metals contamination and acid mine drainage. Furthermore, natural weathering of the geologic deposits, which are sought out for metal deposits, can be a source of contamination even in the absence of mining activities. The nature of such distributed natural and anthropogenic sources makes a traditional site by site cleanup approach grossly inefficient and likely ineffective.

USGS scientist collecting a water sample from a gravel bar on side of a river.
A USGS scientist collects a water sample for analysis of mineral particles know as colloids. Toxic metals (such as copper in excess) bind to the particles, which are then ingested by aquatic animals. Photo credit: Daniel Cain, USGS

The overall goal of HRM research is to provide improved information and tools to support decisions related to management, risk assessment, remediation planning, and mitigation of the anthropogenic effects of mine drainage on the surrounding watersheds and ecosystems. The principal research objectives are to a) characterize hydrologic and biogeochemical processes that affect dispersal of metals and associated contaminants and b) describe contaminant pathways to organisms. Current research expands on previous Toxic Substances Hydrology (Toxics) Program hard rock research by including investigations across broader temporal and spatial scales and by integrating research on bioaccumulation and the effects of metal contamination on organisms with investigations on biogeochemical and hydrologic processes that affect transport and fate of metals in streams and near-stream ground-water systems. Two guiding principles of the research are (1) interdisciplinary coordination to integrate all factors and processes that control the affects of HRM on watersheds and ecosystems from source to receptors, and (2) synthesis of interdisciplinary knowledge across scales to make relevant to the practical management decision making, including liaison with land management agencies for technology transfer and effective identification of science needs.

Hard Rock Mining Related Science Feature Articles

Other Program Hard Rock Mining Research

Hard Rock Mining Research Publications

Fact Sheets

New Publications

Upcoming Publications

  • Informing future decision-making on uranium mining--A coordinated approach to monitor and assess potential environmental impacts from uranium exploration and mining on federal lands in the Grand Canyon region, Arizona: Tillman, F.D., Hinck, J.E., Van Gosen, B.S., and Walton-Day, K., (IN PRESS).

Newly Published

Links to other USGS Information on Hard Rock Mining Contamination


USGS Home Water Climate Change Science Systems Ecosystems Energy and Minerals Environmental Health Hazards

Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
Page URL: http://toxics.usgs.gov/investigations/mining/index.php
Page Content Contact Information: webmaster@toxics.usgs.gov
Page Last Modified: March 23 2017