Algal Blooms Consistently Produce Complex Mixtures of Cyanotoxins and Co-Occur with Taste-and-Odor Causing Compounds in 23 Midwestern Lakes

Cyanobacterial accumulation at Binder Lake, Iowa, dominated by the blue green algae
Microcystis sp. with a dead fish. Total microcystin concentrations were 40 µg/L measured by enzyme-linked immunosorbent assay. Date 6-29-06 ‚Äì photographer Jennifer L. Graham,
USGS.
U.S. Geological Survey (USGS) scientists studying the effects of harmful algal blooms on lake water quality found that blooms of blue-green algae (cyanobacteria) in Midwestern lakes produced mixtures of cyanotoxins and taste-and-odor causing compounds, which co-occurred in lake water samples. Cyanotoxins can cause allergic and/or respiratory issues, attack the liver and kidneys, or affect the nervous system in mammals, including humans. The findings of this study are significant because studies assessing toxicity and risk of cyanotoxin exposure have historically focused on only one class of toxins (microcystins). The common presence of several types of cyanotoxins indicates that there is the potential for inaccurately quantifying hazards using current assessment methods. Additionally, these results suggest that odor (e.g. earthy, musty smells) may serve as an additional warning signal of the presence of cyanotoxins in water, albeit cyanotoxins may be present in the absence of taste-and-odor problems.
Samples were collected during 2006 from near-shore locations in 23 recreational lakes in the Midwestern United States; seven of the lakes are also water-supply reservoirs. All samples were analyzed for a mixture of six different types of cyanotoxins (anatoxins, cylindrospermopsins, lyngbyatoxins, microcystins, nodularins, and saxitoxins), taste-and-odor compounds (such as geosmin and 2-methylisoborneol (MIB)), chlorophyll, and phytoplankton. Five of 6 cyanotoxin classes were detected. Microcystins were detected in 100 percent of samples, anatoxin-a in 30 percent, saxitoxins in 17 percent, cylindrospermopsins in 9 percent, and nodularins in 9 percent. Toxins and taste-and-odor compounds co-occurred in 91 percent of 23 algal blooms.

Marion Reservoir, Kansas, with a posted advisory warning the public not to come into contact with the cyanobacteria bloom present in the lake (circa 2006). Date 6-29-06 – photographer Jennifer L. Graham,
USGS.
Maximum total microcystin concentrations were measured at 19,000 micrograms per liter (µg/L), anatoxin-a (9.5 µg/L), saxitoxins (0.19 µg/L), cylindrospermopsin (0.14 µg/L), and nodularin-R (0.19 µg/L). The maximum microcystin concentration was 3 orders of magnitude larger than the World Health Organization recommended guideline for recreational activities (20 µg/L). Recreational guidelines have not been established for the other measured compounds individually or in mixtures because there currently is insufficient toxicological and epidemiological data.

Dripping algae leaves an impact — A USGS scientist collecting a sample of algae for analysis. The divots left from the algae dripping from the sampler shows how thick these accumulations can be.
Microcystis sp. dominated this accumulation at Binder Lake, Iowa. Date 08-08-06 - Photographer Jennifer L. Graham,
USGS.
This study is part of an ongoing effort by the USGS to characterize the sources, occurrence, transport and fate of cyanotoxin mixtures in various environmental settings. Scientists and managers can use these data to more fully understand and manage potential threats caused by cyanotoxin exposures to humans and animals.
Reference
Graham, J.L, Loftin, K.A., Meyer, M.T., Ziegler, A.C., 2010, Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States: Environmental Science and Technology, doi:10.1021/es1008938
More Information
Related Science Features
- USGS Scientist Receives Award for Assistance with National Wetlands Assessment
- New Study Documents Crop Bactericide, Nitrapyrin, in Iowa Streams
- Nutrients in Dust from the Sahara Desert cause Microbial Blooms on the East Coast of the United States
- USGS Scientists Measure New Bacterial Nitrogen Removal Process in Groundwater
- New Study on Cyanotoxins in Lakes and Reservoirs Provides Insights into Assessing Health Risks
- Importance of Lake Sediments in Removal of Cyanobacteria, Viruses, and Dissolved Organic Carbon
- U.S. Geological Survey Scientists Complete First Systematic Regional Survey of Algal Toxins in Streams of the Southeastern United States
- Remote Sensing Provides a National View of Cyanobacteria Blooms
- Toxins Produced by Molds Measured in U.S. Streams
- Do Combined Sewer Overflows Increase or Decrease Wastewater-Related Chemicals in Receiving Waters?
- Tackling Fish Endocrine Disruption
- Measuring Antidepressants, Fungicides, and Insecticides in the Environment
- Detergents in Streams May Just Disappear
- Emerging Contaminants Targeted in a Reconnaissance of Ground Water and Untreated Drinking-Water Sources
- Biosolids, Animal Manure, and Earthworms: Is There a Connection?
- Wastewater Indicators Shown to Degrade in Streams
- Endocrine Disruption Found in Fish Exposed to Municipal Wastewater
- Household Chemicals and Drugs Found in Biosolids from Wastewater Treatment Plants
- Pharmaceuticals Found in Soil Irrigated with Reclaimed Water
- Are Pharmaceuticals in Your Watershed? Understanding the Fate of Pharmaceuticals and Other Contaminants in Watersheds
- Book Chapter on Exposure Modeling and Monitoring of Human Pharmaceuticals in the Environment
- Glyphosate Found in Wastewater Discharged to Streams
- Tracing Wastewater - Using Unique Compounds to Identify Sources of Contamination
- USGS Scientists Contribute to New Book on Pharmaceuticals in the Environment
- USGS Scientists Develop New Method to Measure Pharmaceuticals in Water
- Developing Methods to Measure New Contaminants in Aquatic Environments
- Glyphosate Herbicide Found in Many Midwestern Streams, Antibiotics Not Common
- National Reconnaissance of Pharmaceuticals, Hormones and Other Organic Wastewater Contaminants in U.S. Streams is Making an Impact
- "National Reconnaissance of Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in Streams" Named as One of the Top 100 Science Stories of the Year
- What's in Our Wastewaters and Where Does it Go?
More Science Features