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Understanding the 
flow system is critical
•

 
Geohydrologic

 
framework

•
 

Sources and sinks of water
•

 
Local and regional boundaries

•
 

Patterns and rates of flow
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Naval Air Warfare CenterNaval Air Warfare Center
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“Homogeneous” unconsolidated aquifers 
continue to pose challenges

Talk Outline
•

 
Hydrogeologic framework

•
 

Flow patterns and discharge 
•

 
Heterogeneity and transport

•
 

Future directions

Laurel Bay, SCLaurel Bay, SC

Amargosa

 

Desert Research Site, NV



I. Hydrogeologic
 

Framework
 Geologic framework relevant to transport at different scales
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I. Hydrogeologic
 

Framework
 Geological models to define hydraulic framework
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I. Hydrogeologic
 

Framework
 Geophysical methods to define hydrogeologic framework
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I. Hydrogeologic
 

Framework
 Inverse modeling to improve aquifer representation

Western

 
Cape Cod
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II. Flow Patterns and Discharge
 Local hydrologic boundaries can control plume paths

Norman Landfill, OKNorman Landfill, OK



II. Flow Patterns and Discharge
 Stable isotopes to define ground-water flow paths

Cape Cod
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II. Flow Patterns and Discharge
 Temperature surveys to locate focused discharge
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Cape CodDiffusion samplerDiffusion sampler

II. Flow Patterns and Discharge
 Discharge can be key to understanding flow paths
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II. Flow Patterns and Discharge
 Rapid sampling methods allow plume path delineation

Cass Lake, MN

Direct-push profiles

New well clusters

Benzene plume 
in 2006



III. Heterogeneity and Transport
 Small-scale heterogeneity affects transport 

Aerial View of Bemidji, MNAerial View of Bemidji, MN



Electrical resistivity tomographyElectrical resistivity tomography

III. Heterogeneity and Transport
 Geophysical methods to describe heterogeneity 

Cape Cod
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III. Heterogeneity and Transport 
Macrodispersion related to heterogeneity

Cape Cod Tracer Test
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III. Heterogeneity and Transport 
Dual domain model may be needed for high heterogeneity



IV. Future Directions
Integration of transport processes along entire flow path
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IV. Future Directions
 Incorporation of uncertainty in simulation and prediction

Western Cape Cod



Final Thoughts

Directions for 
Future Research

•

 

Use of geological information to 
define aquifer framework and fabric

•

 

Methods to characterize 
heterogeneity at relevant scales

•

 

Integrated effects of physical and 
geochemical heterogeneity

•

 

Interaction of ground-water flow 
with NAPL-contaminated zones

•

 

Transport in the unsaturated zone

Successful site cleanup depends 
on a sound conceptual model 
and application of basic 
hydrologic principles and tools

•

 

Inverse modeling methods as 
practical tools at field sites

•

 

Incorporation of uncertainty in 
the understanding of hydrologic 
systems
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