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Why mineral surfaces drive adsorption

Coordination of ions
Interrupted at surface

Surface layer of metal oxide

e P Adsorption of water
Chemisorption of water molecules
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The hydrated oxide
surface

Dissociation of water to form
surface hydroxyl groups



Solutes bind to surface sites
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Cape Cod aquifer sediments




Cape Cod aquifer sediments

Srm 8319

>90% quartz ~5% feldspars

Coston et al. (1995) Wood et al. (1990)



Zinc adsorption on quartz and
sediments

* Adsorption of metal ions like zinc vary with
pH

176 m?/L; 10 uM Zn.

® Cape Cod sediment
A Quartz powder
One site-one proton

One site-two proton
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Cape Cod aquifer sediments

Srm 8319

>90% quartz ~5% feldspars

Coston et al. (1995) Wood et al. (1990)



TEM image

Coating on quartz grain

Goethite, 5-10 nm

Major components: Al, Si, Fe

Banfield and Hamers (1997)
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« Adsorption and chemical speciation



Effect of speciation on transport
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Copper and zinc prior to source
cessation
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Fate of zinc post cessation
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Dissolved organic carbon
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Complexed copper
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Copper and zinc prior to source
cessation
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Outline

e Quantitative modeling of the influence of
variable chemistry



Zinc adsorption on quartz and
sediments

176 m?/L; 10 uM Zn,

® Cape Cod sediment
A Quartz powder
One site-one proton

One site-two proton
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Modeling Zn adsorption

Surface-complexation modeling approach

One-site SCM
Zn?* + >SOH = >S0Zn* + H* Parameters:

>SOHT, logK
Two-site SCM
Zn*t + >SOH = >50zZn* + H*
Zn** + >5,0H = >§,0Zn* + H* Parameters:
>S.OHT, >S,OHT
logK,, logK,,



Zinc adsorption on Cape Cod sediments
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Dissolved Zn: 2-3 uM
Adsorbed Zn: 85-120 uM
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Tracer test design

e Natural gradient (0.4 m/d)

* Inject pulse of groundwater with KBr
(2 mM) and pH 4.5 (CO,)

* Injected groundwater had no Zn



Model calibration: surface ionization and major
cation adsorption or ion exchange reactions

Reaction logK
>SOH+H=>SOH, 3.99
>S OH+H=>S_ OH, 3.99

Na + XH=H + XNa -4.65
K+XH=XK+H -3.63
Mg + 2XH = X,Mg + 2H -6.72
Ca+2XH=X,Ca+2H -6.72

XHTOT = 0.5 meq/100 g — 20 meq/L
>SOHTOT = 3.84 pmoles/m?> — 5 mM

Non-electrostatic model



Breakthrough 4.6 meters downgradient
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Other applications

Ligand-enhanced metal-ion mobllity: Kent
et al. (2008)

Lead and nickel tracer tests at Cape Cod:
Gillian Fairchild’s poster

Uranium at DOE UMTRA sites: Curtis et
al. (2006)

Cr(VI) reactive barrier: (Uli) Mayer et al.
(2001)
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e Critical iIssues and future research



Hanford, Washington

South Pit 1

South Pit 2

North Pit 2

North Pit 1




Dissolved U(VI) speciation

| pH =7.87; calcite equilibrium assumed
U(VI),y = 2 x 10°M
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Alkalinity (meqg/L)

Columbia River 300 Area Groundwater



Presenter
Presentation Notes
POINT:  One of the reasons alkalinity variation is so important is the change in U(VI) complexation

Assuming Ca2UO2(CO3)3 log K = –30. Fox et al, 2006

Assumes only carbonate species contribute to alkalinity and eq with calcite

Predicted predominant species for these solutions is Ca2UO2(CO3)3 (aq), except at highest alk, where UO2(CO3)34- becomes important.  

Ca species is known to exist in Hanford groundwaters (Wang et al., 2004; Dong et al., 2005), and lowers sorption of U(VI) by blocking access to surfaces of higher sorption affinity.


Surface Complexation Model

Sample NPP1-16
Sample NPP1-20
Sample SPP2-18
Sample SPP1-18
Sample SPP2-16
—— Model all data
Model NPP data
——— Model SPP data
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Alkalinity (meqg/L)

Columbia River 300 Area Groundwater
>SOH + UO,?* + H,0 = >SOUO,OH + 2H*

>SOH + UO,?* + H,0 = >SOUO,OH + 2H*


Presenter
Presentation Notes
MODEL USEFUL FOR:  Saturated zone/ reactive transport simulations, Estimating timescales of u transport down through vadose zone, Getting field relevant Kd #s

Goal of the semi-empirical GC modeling approach is to develop the simplest model possible that describes the major features of adsorption as chemical conditions are varied over field-relevant ranges



FITEQL output includes goodness-of-fit parameter, WSOS/DF, the weighted sum of squares of the difference in value between model simulations and experimental data points, divided by the degrees of freedom (Herbelin and Westall, 1999).  Lower values of WSOS/DF mean the proposed model is a better fit to the data. 

The goodness-of-fit is clearly impacted by a difference in U(VI) adsorption between the NPP and SPP samples; the model calibrated with all data splits the two sets of experimental data.  
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Adsorption coupled to other
reactions

* Abiotic arsenic(lll) oxidation

* Microbial arsenic and iron oxidation,
reduction, precipitation, dissolution: Poster
by Kent and others

e Tractable approach to modeling
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