USGS - science for a changing world

Environmental Health - Toxic Substances

Headlines
Facebook Twitter Google+ Email Addthis EnviroHealth RSS Newsletter Sign Up

Algal Blooms Consistently Produce Complex Mixtures of Cyanotoxins and Co-Occur with Taste-and-Odor Causing Compounds in 23 Midwestern Lakes

dead fish in Binder Lake, IA
Cyanobacterial accumulation at Binder Lake, IA, dominated by the blue green algae Microcystis sp. with a dead fish. Total microcystin concentrations were 40 µg/L measured by enzyme-linked immunosorbent assay. Date 6-29-06 – photographer Jennifer L Graham
(Larger Version)

Algal bloom warning sign on the shore of Marion Reservoir
Marion Reservoir, KS, with a posted advisory warning the public not to come into contact with the cyanobacteria bloom present in the lake (circa 2006). Date 6-29-06 – photographer Jennifer L Graham
(Larger Version)

USGS scientist collecting a sample of algae from Binder Lake
Dripping algae leaves an impact — A USGS scientist collecting a sample of algae for analysis. The divots left from the algae dripping from the sampler shows how thick these accumulations can be. Microcystis sp. dominated this accumulation at Binder Lake, Iowa. Date 08-08-06 - Photographer Jennifer L Graham
(Larger Version)

U.S. Geological Survey (USGS) scientists studying the effects of harmful algal blooms on lake water quality found that blooms of blue-green algae (cyanobacteria) in Midwestern lakes produced mixtures of cyanotoxins and taste-and-odor causing compounds, which co-occurred in lake water samples. Cyanotoxins can cause allergic and/or respiratory issues, attack the liver and kidneys, or affect the nervous system in mammals, including humans. The findings of this study are significant because studies assessing toxicity and risk of cyanotoxin exposure have historically focused on only one class of toxins (microcystins). The common presence of several types of cyanotoxins indicates that there is the potential for inaccurately quantifying hazards using current assessment methods. Additionally, these results suggest that odor (e.g. earthy, musty smells) may serve as an additional warning signal of the presence of cyanotoxins in water, albeit cyanotoxins may be present in the absence of taste-and-odor problems.

Key Links

News Release
Paper
Frequently Asked Questions
Podcast
More on Algal Toxins

Samples were collected during 2006 from near-shore locations in 23 recreational lakes in the Midwestern United States; seven of the lakes are also water-supply reservoirs. All samples were analyzed for a mixture of six different types of cyanotoxins (anatoxins, cylindrospermopsins, lyngbyatoxins, microcystins, nodularins, and saxitoxins), taste-and-odor compounds (such as geosmin and 2-methylisoborneol (MIB)), chlorophyll, and phytoplankton. Five of 6 cyanotoxin classes were detected. Microcystins were detected in 100 percent of samples, anatoxin-a in 30 percent, saxitoxins in 17 percent, cylindrospermopsins in 9 percent, and nodularins in 9 percent. Toxins and taste-and-odor compounds co-occurred in 91 percent of 23 algal blooms.

Maximum total microcystin concentrations were measured at 19,000 micrograms per liter (µg/L), anatoxin-a (9.5 µg/L), saxitoxins (0.19 µg/L), cylindrospermopsin (0.14 µg/L), and nodularin-R (0.19 µg/L). The maximum microcystin concentration was 3 orders of magnitude larger than the World Health Organization recommended guideline for recreational activities (20 µg/L). Recreational guidelines have not been established for the other measured compounds individually or in mixtures because there currently is insufficient toxicological and epidemiological data.

This study is part of an ongoing effort by the USGS to characterize the sources, occurrence, transport and fate of cyanotoxin mixtures in various environmental settings. Scientists and managers can use these data to more fully understand and manage potential threats caused by cyanotoxin exposures to humans and animals.

Reference

Graham, J.L, Loftin, K.A., Meyer, M.T., Ziegler, A.C., 2010, Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States: Environmental Science and Technology, doi:10.1021/es1008938

More Information

Related Headlines

More Headlines

USGS Home Water Climate Change Science Systems Ecosystems Energy and Minerals Environmental Health Hazards

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://toxics.usgs.gov/highlights/algal_toxins/index.html
Page Contact Information:
Page Last Modified: Thursday, 04-Dec-2014 10:16:58 EST

Created on Tuesday, August 3, 2010